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Classical Heisenberg model of magnetic molecular ring clusters:
Accurate approximants for correlation functions and susceptibility
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We show that the measured magnetic susceptibility of molecular ring clusters can be accurately
reproduced, for all but low temperaturés by a classical Heisenberg modelNfidentical spinsS

on a ring that interact with isotropic nearest-neighbor interactions. While exact expressions for the
two-spin correlation functionCy(n,T), and the zero-field magnetic susceptibility,(T), are
known for the classical Heisenberg ring, their evaluation involves summing infinite series of
modified spherical Bessel functions. By contrast, the form@jgn,T)=(u"+uN"")/(1+u"),

where u(K)=cothK—K™! is the Langevin function andK=JS(S+1)/(kgT) is the
nearest-neighbor dimensionless coupling constant, provides an excellent approximidtiof for

the regime|K|<3. This choice of approximant combines the expected exponential decay of
correlations for increasing yet small valueswfwith the cyclic boundary condition for a finite ring,
Cn(n, T)=C\(N—n,T). By way of illustration, we show that, fomf>50 K, the associated
approximant for the susceptibility derived from the approximate correlation function is virtually
indistinguishable from both the exact theoretical susceptibility and the experimental data for the
“ferric wheel” molecular cluster [Fe(OCH;),(O,CCH,Cl)];0), which containdN=10 interacting

Fe*" ions, each of spis=5/2, that are symmetrically positioned in a nearly planar ring. 1998
American Institute of Physic§S0021-96068)02317-4

I. INTRODUCTION quantum-mechanical determination of the allowed energy
levels of this ring of ten interactin§=5/2 spins exceeds the
Recent advances in the fabrication of molecular magnetgapability of present-day computers. This clearly under-
portend an unprecedented ability to control the placement ofcores the need for simplified yet realistic “mesoscopic”
magnetic moments in molecular structures and hence to denodels of ring nanomagnets. Furthermore, it is important to
sign and produce nanometer-scale magnetic systénds. establish the lowest temperature, for given sfinthat a
wide variety of molecular clusters containing relatively smallclassical treatment of interacting spins suffices.
numbers of magnetic ion@.g., as few as folican now be The purpose of this article is twofold. We show, except
fabricated* and these provide novel systems in which to testfor low temperatures where quantum effects dominate, that
basic theories of magnetism and offer the prospect of newin approximateglassical treatment of interacting Heisen-
applications. Quite often the magnetic moments are symberg spins can provide results for the magnetic susceptibility
metrically positioned in a simple ring structure within the of small ring structures in excellent agreement with experi-
host cluster, as in the “ferric wheel” molecufeyhere each ment. We illustrate this explicitly with susceptibility déta
cluster contains ten Fé ions of spinS=5/2 that define a from the ferric wheel molecular cluster; we have, however,
nearly planar ring. Ring-shaped magnetic nanostructures thygso analyzed susceptibility data from several other ring mo-
provide a new class of materials in which to test one-ecular clusters and likewise find close agreement between
dimensional models of magnetismMaterials containing experiment and the classical theory for all but low
very long chains of magnetic atoms, such as TMMC, have ofemperature$. The second purpose of this article is to
course long been knowhRing nanomagnets, however, are present simple analytic approximants for the two-spin corre-
sufficiently small that the effects of the cyclic geometry can|ation function, Cn(n,T)=(&-& ), and the zero-field
manifest in the experimentally observed magnetic propertiesmlgneﬁC susceptibilityxn(T), for a ring of N classical
In applying “one-dimensional” models, therefore, one mustejsenberg spins that are valid for all but low temperatures.
distinguish theoretical results in which cyclic boundary CON-(aAs explained in Sec. Il A, a classical spin at sités de-
ditions are employed from those for open chdir@nly for scribed by a unit vecto®;, free to point in any directiop.
sufficiently large systems, of course, does the nature of thyhjle exact expressions for these quantities have been
boundary condition become immaterial. For the aboveyeriyedl® evaluating these expressions entails the summa-
mentioned ferric-wheel system, it has been remdtklat a o of infinite series of modified spherical Bessel functions.
These series are such that, for progressively lower tempera-
dAlso at: Department of Physics, University of Pavia, Italy. tures, increasingly more terms must be included in the sum
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to achieve good accuracy. Besides the tedium of summingerg rings and thus aid both in understanding and developing
large numbers of modified spherical Bessel functions, comhanomagnets.
puting these functions in the large-argument, large-order re-
gime will usually trigger numerical instabilities unless spe-
cific countermeasures are employédy contrast, for the |I. EXACT RESULTS
associatedpenchain of classical Heisenberg spins, the ex- . .
. . . - A. Classical Heisenberg model

pressions for the correlation function and susceptibility are
extremely simplé? Physically motivated approximateex- To fix the notation, the quantum Heisenberg modeNof
pressions for these quantities for the ring, of comparablédentical spins on a ring with isotropic nearest-neighbor in-
simplicity with those for the open chain, would therefore beteractions is written as
highly desirable. N N

We find that the formula Cy(n,T)=[»"(N,K) H=-J2 S-S.;—uB- > S. (2.1
+vN"Y(N,K)]/[1+ vN(N,K)] provides an excellent ap- =1 =1
proximation for the correlation function, wher¢N,K) isan  The S are quantum spin operators in unitsfgfwith Sy, ;
appropriately chosen function arid=JS(S+1)/(kgT) is =S, Jis the exchange interaction enerdyjs the external
the dimensionless nearest-neighbor coupling constant. Noi@agnetic field, angu=—gug, with g the Landeg factor
that this approximant: First, incorporates exponential decaynd uz the Bohr magneton. We note that<0) J>0 pro-
of correlations, which is to be expected for small, increasingnotes (anti-) ferromagnetic ordering at low temperatures.
values ofn; second, satisfies the cyclic boundary conditionWe will explore the properties of the classical counterpart of
for the correlation function associated with a finite ring, Eq. (2.1) obtained by replacing the quantum spin operators
Cn(n, T)=Cy(N—n,T); and, third, satisfies the requirement with classical vectors of lengtiyS(S+1) that are free to
thatCy(0,T) =1, which follows from the fact thag is a unit  point in any direction. Rescalingby J—J.=S(S+1)J and
vector. We note that i<N, the values ofC\(n,T) fora  uby p—u.=pJS(S+1) results in then=3 version of the
ring should differ negligibly from that for an open chain, for n-vector model for spins on a ring,
which the correlation function is given By C™\(n,K) N N
=u"(K), independent oN, whereu(K)=cothK—K™! de- Ho=—Jc> &-8.1—ucB- > &, (2.1)
notes the Langevin function. Now, far<N, our approxi- i=1 i=1
mant is essentially given by"(N,K), suggesting that iN  \heregy, ;=&,. In what follows we consideB=0.
>1 we havev(N,K)~u(K). This leads to our simplest,
least accurate choice(N,K)=u(K) for all values ofN. [A
procedure for selecting more accurate formsvN,K) is
given in Sec. Ill] Even for this simplest choice, however,
i.e., »(N,K)=u(K), we find that the resulting approximant The two-spin correlation function for thd-spin ring is
provides excellent results fdK|<3 as long asN=6. We  9iven by
also find that the associated result for the zero-field suscep- o o
tibility, xn(T), derived from the approximate correlation CN(n,T):<ei'ei+n>NEZr§lf dI' exp(— BHc)€i € 4n,
function, is in excellent numerical agreement with both the (2.2
e e el Tertl where p=(sT) % cU=I (@0, with 00

' P"_sin 6 dg dg the element of solid angle abod, and

proximately 40 K this system cannot be accurately describe%here Z is the partiion functionZy=[dI’" exp(—BHy)
¥ c .

by thg classical Hglsenberg model. Thus, In comparing W'tn:or a finite ring with translational symmetry, the correlation
experiment, there is no advantage gained in utilizing the eXfnction must satisfy the cyclic property

act susceptibility of the classical Heisenberg model rather

than the much simpler approximate formiisee Eq.(3.5)] Cn(n,T)=Cn(N=nN,T). 2.3
which is 233901 on the above choice(N,K)=u(K).  For zero magnetic field, Joyt®has derived an expression
Elsewhere!’ we provide estimates for the lowest temperaturefor the correlation function as a double infinite series involv-

for which results derived using the classical Heisenbergng modified spherica| Bessel functions and the Wigner
model can accurately approximate a ringNfspinsS de-  3j-symbol,

scribed by the quantum Heisenberg model. o o
This article is organized as follows. In the next section _>-1

we briefly review some of the exact thermodynamic proper- Cn(nK)=2y |1§=:o |2§=: (2h+1)l+1)
ties of classical Heisenberg rings. In Sec. lll we present our
approximants for the correlation function and magnetic sus- X1 (K)le—n(K)(ll l2 1
ceptibility. The predictions of these approximants are then ! 2 0 00
compared to exact results. Finally, in Sec. IV we comparevheref (K)=\7/(2K)l ., 12(K) is the modified spherical
our results for the susceptibility with experimental data forBessel function of ordel. The functionsf;(K) decay ex-
the molecular ferric wheel. It is our hope that the presentremely rapidly with increasing for I>|K|. Thus for nu-
work will simplify the analytical treatment of small Heisen- merical calculations, the higher the temperature, the fewer

B. Correlation functions

2
, (2.9
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the terms of Eq(2.4) that are required t_o b_e summed. J(_)yceresults forN=2 are Z,(K)=sinh(X)/(2K) and C,(1,K)

function may be written as an infinite series sions(2.5) and(2.7), respectively, which can be summed for
o this special value oN. We demonstrate this faf, by uti-
Zy(K) =2, (21+1)FN(K). (2.5 lizing the following special case of the Gegenbauer addition
1=0 theorem for Bessel functioris:
We now simplify Eq.(2.4) as well as derive a number of sine 7 & 1
useful new results. We first show that Eg.4) can be writ- - = 2 I+ 5 314 12(2) I+ (12(2)
ten in such a form as to manifestly satisfy Hg.3). The w VZz =0 2
only'* nonzero 3-symbols of the type appearing in EQ.4) % P,(COS &) (2.1
are given by’ : ’ '
) ) where w=\Z?+2z°—2Zz cos¢ and P, denotes the Leg-
a atl 1) = atl a 1 endre polynomial. Selecting=z=iK and ¢= 7, and using
o 0 0 0 00 the fact thatd, , (1/z(iK) =exdi(m2) (I + )11+ w2(K) for
a+1 26 real K, one readily finds that
~(2a+1)(2a+3)’ ' = 5 sinh(2K)
o _ _ Z,(K)=>, 21+ DfAK)= —_—, (2.12
wherea is an integer. Using Ed2.6), the double sum in Eq. =0 2K

(2.4) reduces to a single infinite sum and one obtains as claimed. The expressions @ andCs(1) are somewhat

* lengthy and are given in Ref. 13.
Cn(n,K)=Zy" 2 (1 DKL () + o) "(K) ],
@7 C. Susceptibility
where p,(K)=f, . 1(K)/f(K). It thus follows at once from _ o ) )
Eq. (2.7) that the cyclic property Eq2.3) is obeyed. It will The zero-field susceptibilitper spincan be written as
now be useful to obtain thid— oo limit of Eq. (2.7), for fixed xn(K)= (ﬂﬂ§/3)')?N(K)1 (2.13a

values ofn. By first dividing outfg“ from the two infinite

series appearing in Eq2.7), which includesZy as given by where
Eqg. (2.5, and using the property thap,(K)| <1, the limit _ N
N—c< can readily be taken, with the result )(N(K)EN’l‘_E1 (&i-ej)n- (2.13b
i,j=
; _.n =N
I,\T'f; Cn(n,K)=po(K)=U(K), 2.8 For sufficiently high temperatures, where all the spins are
uncorrelated, the quantity, approaches unity and Eq.

where (2.133 reduces to the statement of Curie’s law. Using the

U(K)=1 3 K)/l oK) =coth K — K~ (2.9  representation(2.7) of the correlation function, one can

_ _ ) o readily derive the following expression famy(K):
is the Langevin function. For thiafinite ring, therefore, the

decay of the correlation function is exclusively exponential,
with a correlation lengthé given by & 1= —In[|cothK
—K™Y]. In the limit N—, the correlation function should
of course be independent of the nature of the boundary co
ditions. Indeed, the result in this limiting case is consisten
with Fisher's finding? that for the open chain of classical hat

f|Nf|+1_f| f|l\i1

2.1
=, | @1

;N(K):sz,;ll}) (14+1)
=0

Ve now examine several special cases of @ql4). First,
lconsidering the limitN—o in Eq. (2.14), it can be shown

Heisenberg spins, ~(K) 1+ u(K) 2.15
. Lim K)y= ——. 2.1
e, K) = u"(K), (2.10 e NPT TS U(K)
independent oN. This form for the susceptibility is common to infinite, one-

We now list several additional exact results. The func-dimensional models with an exponentially decaying correla-
tions f|(K) have the parity property thatf,(—K) tion function, where the parameter can be identified in
=(—1)'f,(K) and hence thas,(—K)=—p,(K). Itthen fol-  terms of the correlation lengtHu|=exp(—& ). We also
lows that for a ring with N even, Cy(n,—K) note that for the casd=2, it can be shown that E42.14)
=(—1)"Cy(n,K). For oddN, however, there is no analo- reduces to the correct expressigs(K) =1+ u(2K), which
gous relation between the correlation functions for ferro- andollows directly from Eq.(2.13h. Finally, for N=1, Eq.
antiferromagnetic couplings. We also note that the result Eq.2.14 reduces to unity and hence we ha)@zﬂ,uﬁlia,
(2.7), in the special casa=0, can be shown to satisfy the which is the correct zero-field susceptibility for a single para-
requirement thatCy(0,K)=1. Finally, we remark that one magnetic spin.
can directly obtain analytic expressions in closed form for  We note that the susceptibility per spin for the associated
Z,, Z3, C5(1), andC53(1)=C3(2) by starting from Egs. N-spin open chain can be obtained by substituting(Ed.0
(2.1), (2.2), and the definition of the partition function. The into Eq.(2.13b, with the result
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FIG. 1. Zero-field magnetic susceptibility per spin, for rings and chainsFIG. 3. Zero-field magnetic susceptibility per spin for rings consisting of an
consisting ofN spins interacting with ferromagnetic nearest-neighbor clas-even(solid curve$ and odd(dashed curvesiumber of spins interacting via
sical isotropic Heisenberg exchange. Proceeding from left to right, the solid@ntiferromagnetic nearest-neighbor classical isotropic Heisenberg exchange,
curves are for ring§N=4, 6, 8, 10,) and the dashed curves are for chains for N=3-115. The values of the susceptibility were obtained using Eq.
(N=4, 6, 8. The values of the susceptibility were obtained using Eg. (2.139 along with Eq.(2.14).

(2.133 along with Egs(2.14) and(2.16) for rings and chains, respectively.

strate the differences between rings composed of even and

~chai 1+u 2u 1-uM odd values ofN whenJ<0. Only for even values oN is
XN 1K) = 1-u N (1-u)? (218 there a common low-temperature limit, 0.5. For increasing
odd values oN, the curves decrease monotonically towards
the limiting curve forN—«. By contrast, the curves for
increasing even values df monotonically approach the lim-
~chai iting curve from below. The overall behavior is in accord
X2 F(K)::HU(K)' . N with the expectation that for sufficiently large valuesMf

Using the above formulas, we display in Figs. 1-3 thethere cannot be any difference between an even and odd

zero-field susceptibility per spin for classical Heisenbergnumber of spins. Put differently, the low-temperature behav-
rings and chains for both ferromagnetic and antiferromag- 4

T . . . ..2lor for small rings consisting of an odd number of spins is
netic interactions. In each of these figures the susceptlbllltyjominated by frustration effects. Frustration is a predomi-

per spin is given in units o,&ﬁ/(3|ch|). In Fig. 1 resuits ar€ nant feature especially fal=3. For this system, the low-
fﬁ‘—;w% rfct;rottr:]echzailﬁg Znod' r1i—r?es gﬁgggeigﬂrségllovtzﬁg\sof temperature limit of the correlation function turns out to be
the results very nearl coinc?dé with thyose foroo. In Fi given by(e,- &)= ~1/2, which translates to each spin being
5 displ y It fy th 360 and f ) | g.f oriented 120° with respect to its neighbors. In Ref. 13, a
we display results for the cade-0 and forevenvalues of - yoijaq discussion is given on frustration effects in quantum

N. Note that, for the case of the rings, the results for fiNite 4 ¢5qsical Heisenberg rings, and the dependence of these
very quickly converge to that foN—. A very different effects onN andS

behavior occurs for finite chains. It is noteworthy that for the

chains, the dependent variable approaches unity in all cases

in the low temperature limit. Note also that only fdf 1. APPROXIMANTS
>1000 have the results converged to that kb0, and
then only ifkgT/|J,| is not too small. In Fig. 3 we demon-

Obviously, by lettingN—c in Eq. (2.16), we correctly re-
cover Eq.(2.19. One can check that E¢2.16 reproduces
the correct expressions fdi=1,2, namely,y$"®"=1 and

A. Correlation functions

In this and the following subsection we present simple
approximate formulas for the two-spin correlation function
: ' T Cn(n,K) and the susceptibilityy(K) for a classical Heisen-
CHAINS: 4. 6, 8, 10, 30, 100, 1000 1 berg ring ofN spins and compare these with the exact ex-
pressiong2.7) and(2.14) given in the previous section. As
stated in the Introduction, we anticipate that the correlation
function for a ring of spins should initially incorporate expo-
nential decay with increasing as well as fulfill the cyclic
condition Eg.(2.3). Proceeding from a given sifeto a site
i +n on the ring, in keeping with the exponential decay of
04 correlations that is well known to occur for an open chain of
0.3 : ' ; ' Ising or Heisenberg spins, the spin correlation functiep
' -€,n) should display similar decay. On the other hand, if
one draws a diameter of the ring through sité is clear that
FIG. 2. Zero-field magnetic susceptibility per spin, for chains and ringsspini should be correlated in the same way with each of the
consisting of an even number of spins interacting via antiferromagneticﬁ)airS of spins that are positioned symmetrically with respect
nearest-neighbor classical isotropic Heisenberg exchange. The values of the . P P y . y ,p_
susceptibility were obtained using E.13a along with Eqs.(2.14 and  tO that diameter. Both of these features are in fact exhibited
(2.1 for rings and chains, respectively. by each individual term contributing to the series represen-

1.0

0.9

0.8 ANTIFERRO

0.7
0.6

31 (T)/u2

0.5

K T/IIS(S+1)]
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1.0 o e TABLE I. Correlation functionsCy(n,K) for N=6. For each value df the
[ i entries of the first row are obtained using the approximati), where
0.8 v(6,K) is chosen according to E¢B.4). The entries of the second row are
[ calculated using the exact series expansii).
0.6 L
< 3 K Cs(1K) Cs(2K) Cs(3K)
z [
3 04 i 1 0.315589 0.107381
0.315517 0.107364 0.06120426
021 2 0.561149 0.354165
0.559293 0.353548 0.2935233
OO 1 I 1 1 1
0 2 4 " 6 8 10 10 0.916467 0.867577
0.915634 0.867250 0.851484

FIG. 4. The functionsv(N,K) for N=2,6,10 as obtained using3.4),
where Cy(N/2K) is the exact correlation function for a pair of spins at
opposite ends of a diameter of a ringshdoEpins. The functiong(2,K) and
v(,K) are given by Eqs(3.3) and(3.2), respectively, whileCg(3,K) and

C.4(5K) have been calculated using E@.7) tively, to »(2K), given by Eq.(3.3), andu(K), as functions

of K.

An improved procedure for selecting the form of
v(N,K), as compared to using(N,K)=u(K) for all N,
tation (2.7) of the exact correlation function. Each term of then consists of the following. We limit our attention to even
the infinite series consists of two subterms, one of whichyalues ofN and require that our approximate formula, Eqg.
pI'(K), decays with increasing, while the otherp,N’”(K), (3.1), coincide with the exact values @y(N/2K), as com-
grows with increasing. puted from Eq.2.7), for all values ofK. Imposing this re-

Seeking thesimplestpossible mathematical form em- quirement provides a quadratic equation for the quantity
bodying these twin requirements, we are led to approximatgr(N,K)]V? and thereby fixes the form af(N,K) as

the correlation function by 1- VI—[Cu(NZK) 2N
CN(nuK):[Vn(NyK)JFVN_”(N,K)]/[1+ VN(N,K)], V(N’K): CN(N/Z,K) : (34)

3D [Note that this formula includes the result E@.3) for

wherg v(N,K) is some appropriately chosen function of_ the »(2K) as a special cageWe then compare the predictions
coupling constanK andN. Without any loss of generality ¢ Eq. (3.1) with those of the exact formula, Eq2.7), for

we may suppose that the magnitudeigN,K) is less than 1 ~N/2)—1, using the choice Eq3.4) for »(N,K).
unity, since t_he right-hand side of E@.J) is invariant under Using Eq.(3.4) for N=6,10 leads to the curves shown in
the SUbSUtU“OW(N,K)H1/V(N,K). We note that Eq(gl) F|g 4 along with the exact fUﬂCtionﬂ(z,K) and V(OO,K).

preserves the identitC\(0K)=1. In order to meet the The most striking feature of this plot is that except for low
large-system limit, Eq(2.8), we must have temperatures|K|>3) there is very little difference between
lim »(N,K)=u(K), (3.20  the three functions (6 K), »(10K), and»(,K). That is,
N—so0 the crudest approximation, of adopting the quantify,K)
=u(K) for v(N,K), performs very well for aIN=6 in the
temperature rangiK | < 3. Of course, the larger the value of

gests_that the simplest version of E§.1) W(_)md consist of N, the larger temperature range over which this approxima-
adopting the choice(N,K)=u(K) for sufficiently largeN. tion is successful

In fact, as shown below, the resulting approximate correla- We now examine the error that arises in using &)

iog funct:(on pefrffo.rmfl Vifthte" fONBtG as \I/(\)/ng 351 Kt| thi in conjunction with Eq.(3.4) to approximate the exact cor-
' "e"h or iu ]|(C||<|an y hig b empera ures." €a gp I\'frelation function. In Tables | and Il we list exact as well as
approach in the following subsection as well as in Sec. approximate values aEq(n,K) for n=1,2,3 andCo(n,K)
where we find that we can accurately reproduce the eXPery 1 5 for the relatively low temperatut| =10 as
mental data for the zero-field susceptibility of the molecular,, .o for IK|=1,2. The agreement is excellent and im-
fet:]rlc \r/]vhedel tqr:l=1(|)) ft<_)r te;mpl\elzrztures f;lbovel 52 K. O(;] the proves significantly as one considers higher temperatures.
KI fer ar;f_ . el selec Ilfn im( ' 1)\|m't|1'f1 surely epend_lon We have not discussed the quality of the fit provided by Eg.
or sufficiently small values oN. This is most rea Y (3.1 for |K|>10 since the replacement of the underlying
demonstrated foN = 2. Suppose that we choose the functlonquamum Heisenberg model, Eq2.1), by the classical
.’1(2.’K) b.y requiring that Eq(3.1), for N=2 andnfl, co- Heisenberg model, Eq2.1"), must be invalid at sufficiently
incide with the exact resul€,(1,K)=u(2K). In this case low temperatures. The purpose of using E8i4) is to ex-
one finds that ' '

plore in principle to what extent is the-dependence of the

whereu(K) is the Langevin function, Eq2.9). This sug-

1—1—u%(2K) correlation function satisfactorily described by the functional
v(2K)= W (3.3 form Eq. (3.1). We have just seen that this approach does

indeed provide a very accurate fit to the exact values of
In Fig. 4, the curves labeled 2 and correspond, respec- Cy(n,K). However, for practical work, foN=6 one can
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TABLE Il. Correlation functionsCy(n,K) for N=10. For each value oK the entries of the first row are
obtained using the approximatidB.1), wherev(10K) is chosen according to E@3.4). The entries of the
second row are calculated using the exact series expaf&ifn

K C1o(1.K) C1o(2K) C1(3K) Ci1(4K) C1o(5K)
1 0.313034 9.8081810 2 3.09686< 1072 1.05430< 10?2
0.313059 9.8081810°? 3.09685< 1072 1.05429< 1072 6.01154x 1073
2 0.539578 0.294630 0.167339 0.106873
0.539252 0.294407 0.167242 0.106850 8.908%6 2
10 0.910611 0.843233 0.796236 0.768485
0.908610 0.841284 0.795120 0.768170 0.759308

skirt the task of computing\(N/2,K) which is needed in the second was a quantum-mechanical calculation performed
Eq. (3.4), and instead use E@3.1) in conjunction with the for an 8-spin ring described by thguantum Heisenberg
simplified choicer(N,K)—u(K). model (2.1).

In Fig. 5 we show unpublished experimental molar sus-
ceptibility data(+ symbol$ which were obtainétlat Uni-

We now calculate the zero-field susceptibility using theversitadi Firenze for a powder sampl@é ia 1 T magnetic
approximate correlation functior{3.1) for the simplest field. This data agrees quite well with that reported in Ref. 4
choicev(N,K)=u(K). Simple algebra yields the following for 0.3 T. We estimate that the peak value, 0.2072 emu/mol,
result for the reduced susceptibiligy(K) of Eq. (2.13b: occurs at the temperatufe= 60 K. We then required that the

_N exact theoretical formula for the molar susceptibility, starting

(K= EJ_FEEE;%EJFENEEH ) (3.5 from the zero-field expressiori2.139 and(2.14), also have

its peak at this temperature. This requirement is met upon
In the following section we compare exact numerical valuesadopting the valud~ —14.114 K, which is very close to the
of ¥n(K), obtained using Eq(2.14), with those obtained previou estimate. In Fig. 5 the solid curve is the prediction
using Eq.(3.5). Both sets of results are also compared toof the exact theory for the molar susceptibility, multiplied by
experimental data for the ferric wheel molecular cluster. Wean overall constant, 0.9728, so as to pin the peak theoretical
remark that Eq.(3.5), rewritten asyn/x.=(1—uN)/(1  value at the peak measured value, 0.2072 emu/fidie
+uMN)y=tanN/(2¢)], gives a simple expression for the molar susceptibility is obtained by multiplying E¢.133,

B. Susceptibility

finite-size scaling function for the susceptibility. the susceptibility per spin, by N), where N, is
Avogadro’s number, since each cluster contains ten magnetic
IV. COMPARISON WITH EXPERIMENT ions] Thus, we find that the theoretical value for the molar

susceptibility is 2.8% larger than the corresponding experi-
The molecular ferric whee[F&(OCH;),(O,CCH,Cl)];9)  mental value. We believe that this agreement is quite satis-
is one of a variety of polynuclear metal complexes that havéactory given the fact that the experimental data is affected
been synthesizéd in recent years. Prepared as powder
samples, the individual molecules appear to make indepen-

dent contributions to the magnetic susceptibility, i.e., the in- 0.25 T ' ' - 35
tercluster magnetic interactions are thought to be negligible. 130
The source of the magnetic properties of a given molecule 0.20p " 108
are the ten paramagnetic¥eons uniformly spaced along a = A

. ) 5 0.15F 'APPROX ]
ring-shaped structure. The spin angular momentum of an £ / 20 4
Fe' ion is S=5/2, its orbital angular momentum is E 1ol /’ 15 3
guenched, and thus the value of thdactor isg=2. It has N 110
been establishédhat these ten ions interact with nearest- 0.05L/ ]
neighbor antiferromagnetic isotropic Heisenberg spin ex- ! 1°
change. That is, the magnetic properties can be described in 0.00 : o ' : 0
terms of the Hamiltonia2.1), where the exchange interac- 0 50 100 1T5(()K) 200 250 300

tion energy(in units of kg) has been estimatédo be ap-
proximately J=—14 K. In the corresponding classical FIG. 5. Molar susceptibilityexperimental and classical Heisenberg sys-

; ’ ; tems versus temperature for the ferric wheel molecular cluster: Experimen-
Heisenberg model, E¢2.1), the associated values of the tal data for a magnetic field of 1 T+); exact theory, ring(solid curve;

interaction paramt_aters areJo~—1225K and puc _ approximate theory, ringlong dashes exact theory, infinite chaitishort
=—/35ug, respectively. It should be noted that the assign-dashes Also shown are values of x(T). This quantity will approach a
ment of the above numerical value dfwas made in Ref. 4 constant limiting value,~43 emu K/mol, in the high-temperature regime

by comparing experimental susceptibility data to the predic (Curie’s law. As explained in Sec. IV, each of the theoretical expressions
. . . .__for the molar susceptibility has been multiplied by a numerical factor of
tions of two theoretical models. The first was the classicab.g72g in order that the peak of the solid curve equals that of the experi-

Heisenberg model2.1’), for aninfinite chain of spins, and mental data0.2072 emu/mgl
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by the external magnetic field and it has been assumed thdhe classical approximation consists of replacing the quan-
the powder sample was composed of identical molecules. Patim spin operators with vectors of lengifs(S+ 1) that are
differently, this level of agreement between theory and ex4ree to point in any direction. For the Fespins of the ferric
periment affirms the high degree of purity of the experimenwheel, S=3. As discussed in Sec. IV, we have fit the com-
tal powder sample, pictured as identical, unblemished ferriguted results to the experimental data, first by adjusting the
wheels each incorporating ten¥eions. exchange constardt so that the temperature associated with
Also shown in Fig. 5 are the approximate molar suscepthe peak in the computed susceptibility agreed with that for
tibilities derived from Eq.(3.5) (long dashes and from the  experiment, and second, by adjusting an overall multiplica-
infinite-chain classical Heisenberg antiferromagrishort  tjye constant so that the value of the theoretical susceptibility
dashes i.e., proportional to (¥ u)/[T(1—u)]. All of the  coincided with experiment at one temperature, that of the
theoretical formulas are for the zero-field molar susceptibil—peak_ The resulting value of is quite close to previods
ity and each has been multiplied by the same overall multigtimates, obtained with other models. Furthermore, for tem-
plicative constant given above. The close agreement betweey a1 res above that of the peak, the theoretical susceptibility
the infinite chain susceptibility and the approximate SUSCeps iy excellent agreement with the measured values. We note,
tibility (3.5) is to be eépected since these two quantities dif'however, that even without making the peak values agree
fer by terms of ordeu, and ev%n for such a IO.W tempera- using an adjustable parameter, our absolute determination of
ture as TZSO.K we have u _%0'02' For increasing the molar susceptibility agrees with experiment to within
temperatures this difference rapidly decreases to zero. Wh@(%_ We believe this amply confirms the utility of the classi-

could not be anticipated, however, without evaluating Eq. - . -

. _cal approximation to predict the susceptibility for all but low
(2.14), is the close agreement between the exact susceptibi- . . :

. o . . i emperatures. We reiterate, we also believe that this level of
ity of the finite Heisenberg ring and the approximate suscep-

tibility, Eq. (3.5). Furthermore, inspecting Fig. 5 one Seesagreement aﬁirms_the high detgree. of purity of.the exper_i-
that below approximately 40 K, the molecular ferric Wheelmental sample, pictured as identical, unblemished ferric
susceptibility cannot be accurately described by the classicdl he_ﬁ]s. d ¢ thi il d

Heisenberg model. For this system, therefore, there is ng e second purpose of this article was to demonstrate

advantage to the exact susceptibil{;14) over the simple, the remarkable gfficacy ‘?f the approximgti()&l) to the
approximate form(3.5). two-spin correlation function. We approximated the exact

We have also included in Fig. 5 the values of the quan<orrelation function, given by Eq2.7), by a sum of two
tity Tx(T). At sufficiently high temperatures this quantity, {€rms: The first term implies exponential decay @g(n)
per mole, must approach a constant limiting val@arie’s for |n|<N,- whereas the second term ensures .that the cyclic
law), given by approximately 43 emu K/mol. More specifi- Property given by Eq(2.3), Cy(n)=Cy(N—n), is obeyed.
cally, in the high-temperature regime one can ignore all ofWe then used the approximate correlation function to obtain
the functionsf,(K) in Egs. (2.5 and(2.14), since for small ~an associated approximant for the zero-field susceptibility,
values ofK one has[see Eq.(10.2.5 of Ref. 17 f,(K)  Ed.(3.5). The form listed for Eq(3.5) is given in terms of
=0(K"), except forfo(K)~1. It is then straightforward to the Langevin functionu(K), which is related to the exact
derive the first two terms of the high-temperature expansiogorrelation lengthé, by [u|=exp(-£'). As we have seen,
of the molar susceptibility, in powers ¢3|/(kgT), as this approximation gives results for the susceptibility in ex-
S(S+1) p cellent agreement with the exact quantity for all but very low
Tx—Na(gup)? —=— [1— =+0(1/T?) (4.1 temperatures. As discussed in Sec. lll, [E85 represents
3kg T the susceptibility upon using the simplest choice of the func-
where #=2|J|S(S+1)/(3kg)~82.33K is known as the tion »(N,K) in Eq. (3.1, namely its largeN limiting form,
paramagnetic Curie temperature. The excellent fit betweeRd. (3.2), which turns out to bai(K). A greatly improved
experiment and the exact formula far(T) even at very choice is provided by Eq(3.4). However, in view of the
low temperatures is of course due to the factowhich  excellent agreement for the susceptibility already achieved
minimizes the differences ig(T). Nevertheless, if nothing using Eq.(3.2), it seems pointless to invoke the ultra-high
else, the excellent fit over the entire temperature range showaccuracy offered by Eq3.4).
emphasizes that an isotropic nearest-neighbor Heisenberg In short, we have shown that classical Heisenberg spins
model of spins on a finite ring provides an excellent frame-can approximate extremely well the observed magnetic be-
work for explaining the magnetic properties of the ferric havior of small quantum Heisenberg rings. We have also
wheel. It is remarkable that a synthesized material shouldhown that, instead of employing the complicated machinery
adhere so closely to the model. of Joyce’s exact solution to the classical Heisenberg ring,
one can obtain results of high accuracy making use of the
extremely simple approximants discussed in this article.
Hopefully this will simplify the task of comparing experi-
This article has had two purposes. First, we have demmental data with the predictions of the classical Heisenberg
onstratedsee Fig. Hthat a classical treatment of Heisenbergmodel. More generally, we hope that as molecular magnetic
spins situated on a small ring leads to results in excellensystems continue to be explored for their possible applica-
agreement with the measured magnetic susceptibility of th&ons, the approximants discussed here will prove useful in
ferric wheel molecular cluster for all but low temperatures.accelerating the development of a nanomagnetic technology.

’

V. DISCUSSION
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